
Architecture 

Abstract Representation 

We used StarUML for designing the UML class structure model as it adheres strictly to UML notation, is                                   
available for free and generates professional-looking UML diagrams. As for notation, we have mostly                           
adhered to the standard UML notation with the possible minor exception of the College class. Because                               
this class links to two other instances of itself we decided it would look messy to have a two-way link                                       
from a class to itself and so we instead decided to use it as a de-facto data type for two attributes (‘ally’                                           
and ‘enemy’), making the diagram much neater. 

 

Class  Brief Description 

Player  This class creates the player object that holds many key variables in the                         
game such as money and points as well as the player’s position on the                           
map. It also has an associated ship object and college. 

Functions: 

● The addMoney function takes an integer and alters the player’s                   
money by that amount. It takes both positive and negative integers,                     
allowing it to also be used to subtract from the players money in                         
cases such as the player making a purchase from a shop or losing                         
at the minigame. 

● The addPoints function will work similarly to the addMoney                 
function, except it will alter the player’s points attribute instead of                     
their money. 



Ship  This class allows multiple ships to be instantiated, each with their own                       
unique stats and is the superclass of Enemy. The object stores information                       
about the ship such as its stats (attack, defence and accuracy) as well as its                             
current health and type, the latter of which determines its default stats                       
and graphic representation in the game. 

Functions: 

● The attack function allows one ship to attack another. It will                     
calculate whether the attack hits or misses and how much damage                     
should be dealt based on the first ship’s stats and then call the                         
second ship’s damage function to deal the damage. 

● The damage function will handle the dealing of damage to a ship,                       
adjusting its health attribute accordingly. It will also detect whether                   
the ship has sunk and if needed call the sink function. 

● The getMaxHealth function calculates the ships maximum health               
based on its stats. This will be used for comparison to the health                         
attribute and for repairing the ship back to full health. 

Enemy  This is a subclass of ship and inherits it’s methods. It can also take a                             
College object as a modifier to the class to allow enemy ships to be from                             
different colleges. 

Functions: 

● The sink function will be used when the enemy ships health falls to                         
zero or less. It will calculate how much money the player should                       
receive as a reward and return it as an integer. 

Island  This class creates the object Island, and holds the position (coordinates) of                       
the island on the map. 

Functions: 

● The repair function repairs the players ship by the amount specified                     
by the parameter ‘amt’. 

Department  This class implements the Department instances of Islands and as such is                       
associated with Island by a 1-1 relationship. It also has additional                     
attributes such as ‘upgrade’ (the type of upgrade the department sells) and                       
‘cost’ (how much the upgrade costs to purchase) to facilitate the player                       
buying upgrades for their ship. 

Functions: 

● The purchase function handles the purchasing of the department’s                 
upgrade and its application to the players ship. 

College  This class implements the college factions in the game. It is associated with                         
any number of islands to allow for the capturing of other colleges and also                           
stores the colleges ally and rival (both of type College). 

Minigame  This class implements the minigame and as such has an attribute                     
containing the amount the player has bet, to be used in calculating                       
winnings. 

Functions: 

● The start function is used to start an instance of the minigame. It                         
takes the amount the player has bet in the parameter ‘bet’. 



Weather  This class implements the weather system of the game. The attribute                     
‘position’ will hold the current position of that instance of the weather                       
system on the map. 

 
Sequence Diagram 

 

A brief description of each player’s action options when they move one tile. 

● Start - Any action that occurs when the player is stationary on a square 
● Move Phase - Any action that concerns the moving of the player ship to a new grid position  
● Combat Phase - Any action that concerns the user encountering an enemy ship 
● College - Any action that concerns the user encountering a college 

○ Minigame - Any action that concerns the minigame 
● Department - Any action that concerns the user encountering a department 

○ Upgrades - Any action performed at a department where the user upgrades their ship or                             
views possibilities to 

● Pause - Any action that concerns the user pausing the game 
○ Minigame 

● End - Any action that will lead to the ending of a player’s movement.  

   



Justification 

Class  Justification 

Player  This class allows us to meet the requirement F6 (point system), as the                         
method ‘addPoints’ allows the points attribute in the Player instance to be                       
modified whenever necessary.  

This classes ‘money’ attribute also allow requirements F7 and F11 to be                       
met via the ‘addMoney’ method. 

Ship  This class allows us to meet requirement F1 (ships as transportation) as 
the object has methods (‘setMoving’ and ‘turn’) that allow ship movement 
on the map. This also allows us to meet the functional requirement F3 
(sailing mode). 

Enemy  This class allows the generation of enemies allowing us to meet functional 
requirement F4 (combat mode). 

Island  Island class along with the associated College class allows us to meet 
requirement F8 (capturable colleges), as the associated College can be 
changed to that of the players. 
 
Island also allows the method ‘repair’ to be implemented, meeting 
requirement F11.2 (plunder can be spent on healing) 

Department  Department class allows requirement F11.1 (upgrade ships) to be met as 
there is a ‘purchase’ method. 
 
The class also allows us to meet the requirement F5 (game must have at 
least three departments) by its inclusion. 

College  As shown in Island class, College allows us to meet requirement F8, of                         
capturable colleges through association. 

The class also allows us to meet the requirement F5 (game must have at                           
least five colleges) by its inclusion. 

Minigame  Minigame class allows us to meet the requirement F12 (must be a                       
minigame). The attribute bet and method “start”, allow F12.1 (betting                   
within minigame), to be achieved. 

Weather  Weather class allows us to meet requirement F6.3, (points will be awarded                       
through survival from weather). 

 

Sequence Diagram Justification 
We chose to use a sequence diagram to illustrate how a player’s turn would work. We chose a sequence                                     
diagram over other designs available as it shows clearly and concisely each step possible when a player                                 
moves 1 square. This is not over complicated (as many other designs can be) which made it a lot easier to                                         
plan out classes for our UML diagrams. The simplicity of this diagram means that when we eventually                                 
make many changes to the game, the sequence diagram will still be relevant and useful. If too many                                   
specifics had been used, there is the risk that when something changes in the game, the diagram would                                   
no longer serve a purpose. 


