
Architecture Report

Architecture

Package Class Description

attacks Attack

Holds the base information for an attack. Everything else in the attacks
package is an instance of attack (apart from flee) as they are all
different variations of the default attack. This contains the variables to
be inherited by other instances to create different attacks with differing
damages.

Flee Inherits from attack. Random number generated to decide if the flee is
successful, if the number is not high enough, the user will stay in
combat.

Ram This attack inherits the default damage from the attack class and adds
a multiplier to it, making it a variation on the basic attack.
 GrapeShot

combat CombatScreen Called whenever there is combat in the game between two ships. This
creates a new screen containing the two ships ready to battle, their
health bars and all the different attack options the user has.

CombatShip Contains the texture of the ship actors drawn in CombatScreen.

BattleEvent Contains the different events that could happen during combat.

AttackButton Inherits from TextButton to create buttons used for CombatScreen.

screen SailingScreen Contains the entire sailing mode. This creates the landscape used
when the user is sailing, including islands and loading in the graphics
of the ships. All other screens apart from MainMenu can be accessed
from this screen by interacting with corresponding objects.

CollegeScreen Called whenever player interacts with the island of an ally college.
Provides healing service.

DepartmentScreen

Called whenever player interacts with the island of a department.
Provides different upgrades and healing service.

MainMenu The first class called when the game is initialised. It gives user the
option to enter SailingScreen, CombatScreen, DepartmentScreen or
CollegeScreen. This has been done to easily show clients what the
game is capable of but eventually we hope to have it changed to “load
game” and “new game” in order to allow users to save their progress
or to start the game new again.

base BaseScreen Implements the Screen interface. This class provides the base code
for every screen in the game.

BaseActor Extends the Actor class. This class provides the base code for all
objects in the game.

PhysicsActor Extends BaseActor class. This class provides the base code for all
objects that require movement and collision.

 Ship Used to create new instance of a ship. This class provides the sailing
feature of the player ship and allows user to select a specific boat type
at the beginning of a playthrough, but for now all ships are of Brig type.

 College The current colleges are Vanbrugh, Derwent and James. This holds
the name of the college, its allies and enemies as well as controls
whether or not the boss of this college has been defeated.

 PirateGame The instance of the game that is run in the launcher. It initialises
MainMenu and holds all the necessary variables and calls to start the
game up from the beginning.

 Player Stores all the player’s information for a single playthrough of the game.

 ShipType Holds the different ship types that the user can choose between at the
start. However, due to it being unnecessary for this assessment
currently only Brig is used for all ships, but it is important to keep the
option for further improvements to the game.

 Department The current departments are Chemistry and Physics. This holds the
name of the department, its product (which the user can buy to
upgrade their ship) and the base price of the product that they sell.

Different packages are not required, however, we found it good practice in order to keep our code readable
and reusable:
base ​- ​Contains all the base codes for screens and objects(actors) so all children classes don’t have to
rewrite the same code.
attacks ​- Holds all the classes of available attacks.
combat ​- Contains all the information needed when the player is in combat.
screen ​- Holds all the different screens in the game.

UML Diagram
Please find our collection of UML diagrams referenced at [1], [2], [3], [4] and [5]. These in turn show how
the entire program links, and then how each separate package works.

Tools used to create concrete architecture
To create the most realistic yet readable concrete architecture, our group opted to use a plugin for IntelliJ
(The IDE we used for our project) called Sketchit. This plugin generated UML for each package inside the
plantUML syntax. Using a plugin from our source code meant that all classes and functions were named
and represented at 100% accuracy which is required when developing a concrete architecture.

Description of languages used to describe architecture
The languages used to describe our architecture were strictly the standard UML 2.0 notation. We chose
such a modelling language as we knew that in software development, this is the most popular notation,
meaning that other groups can easily understand our program if only given our UML diagrams.

Justification

Class Justification ​(Requirements referencing can be found at [6])

Attack Attacks is necessary in helping build the combat system required in ​F4. ​This is a
simple way to move attacks into their own class, making it easier to add and remove
new attacks.

CombatScreen Having a CombatScreen class allows us to meet all of criteria ​F4​, more specifically
F4.2 as this dictates that there should be a difference between sailing mode and
combat mode.

BaseActor Creating objects (actor in this case) is one of the most important and common
operation in the game. This class makes this process much easier as similar code
don’t need to be rewritten, thus helps massively when it comes to future expansion
NF3​.

MainMenu Main menu is implemented to easily present the features required at the current stage
to the clients.

College College allows us to meet requirement ​F8​, of capturable colleges once a player
defeats the college boss in a battle.

The class also allows us to meet the requirement F5 (game must have at least five
colleges) by its inclusion.

Having a college allows the player to repair their ship if it has been damaged, this
meets the requirement ​F11.2​ (plunder can be spent on healing).

PirateGame This class contains an instance of the game at the current playthrough, which can be
passed to the launcher to run. This is necessary when creating any game using
LibGdx.

PhysicsActor Making objects moveable (such as the players ship) was vital in meeting ​F3 (the
game must have a sailing mode) as it would be impossible to create a sailing mode
without the ship object being able to move. Also it is necessary to have some form of
collision detection for ​F1 (​the game must feature the University as islands on a huge
lake).

Player This class allows us to meet the requirement ​F6 (point system), as the method
‘addPoints’ allows the points attribute in the Player instance to be modified whenever
necessary.

This class’s ‘money’ attribute also allow requirements ​F7 and ​F11 to be met via the
‘addGold’ method.

Ship This class allows us to meet requirement ​F1 (ships as transportation) as the object
has methods (‘’playerMove’’) that allow ship movement on the map.

The ship class is also needed for sailing and combat as without a ship for the player,
it would be impossible to implement these.

SailingScreen This allows us to meet the functional requirement ​F3 (sailing mode). It also helps
meeting ​F4.2 ​where there should be a clear difference between sailing and combat.

Department Department class allows requirement ​F11.1 (upgrade ships) to be met as there is a
‘purchase’ method.

The class also allows us to meet the requirement ​F5 (game must have at least three
departments) by its inclusion.

Having a college allows the player to repair their ship if it has been damaged, this
meets the requirement ​F11.2​ (plunder can be spent on healing).

BaseScreen BaseScreen makes it easier to create screens as the same code don’t need to be
rewritten, thus helps greatly when it comes to future expansion​ NF3​.

Changes From Abstract Architecture

Since writing our abstract architecture [7] , we found changes where we could slim our code down in order
to make it more readable and traceable. These changes were then implemented to create our final concrete
architecture. Here are the changes we made:

1. Because of how Tiled and libGDX works, we decided to hard code islands into the map, rather than
having an island class that department and college can inherit from. Also department and college
have nothing in common meaning that having them inherit from the same class is almost pointless
as there is no shared code between the two.

2. Got rid of enemy. Enemy was a redundant class as it could just be made from a single ship. This
meant that the entire enemy class was useless and could be replaced with creating a new instance
of ship, which is a much better programming technique. This allowed us to trim down our code and
make it more receptive to new changes if more enemies need to be made.

3. We initially planned the ship to have a function of attack. Now we have an attack class with a
“DoAttack” function which calls the specific attack the user selects. This gives a lot more flexibility to
programming new attacks and allowing the user to unlock new attack styles.

4. Previously, we had planned for there to be just 8 classes; Player, Ship, Enemy, Island, Department,
College, Minigame and Weather. However, the specification said specifically to not go over the
stated requirements, meaning the Weather and Minigame were no longer needed in this version of
the game.

5. Sailing was implemented into the game which was not planned in the abstract architecture. After
consulting with our client, we decided it was necessary to add this feature as it was impossible to
use tiled map without such feature.

6. We also found out that the process of creating new objects and screens involved a lot of repetitive
code, which motivated us to create the classes “BaseActor”, “BaseScreen” and “PhysicsActor” that
stores all the necessary code and can be inherited for use off the shelf.

References:

[1] SEPR “Concrete UML for York Pirates” Rear Admirals [Online] Available
 ​https://therandomnessguy.github.io/SEPR/Images/Ass2UML/Core.png
 [Accessed: Jan. 20 2019]
[2] SEPR “Concrete UML for York Pirates” Rear Admirals [Online] Available
 ​https://therandomnessguy.github.io/SEPR/Images/Ass2UML/york_pirates.png
 [Accessed: Jan. 20 2019]
[3] SEPR “Concrete UML for Attacks” Rear Admirals [Online] Available:
 ​https://therandomnessguy.github.io/SEPR/Images/Ass2UML/Attacks.png
 [Accessed: Jan. 20 2019]
[4] SEPR “Concrete UML for Combat” Rear Admirals [Online] Available:
 ​https://therandomnessguy.github.io/SEPR/Images/Ass2UML/Combat.png
 [Accessed: Jan. 20 2019]
[5] SEPR “Concrete UML for Screen” Rear Admirals [Online] Available:
 ​https://therandomnessguy.github.io/SEPR/Images/Ass2UML/Screen.png
 [Accessed: Jan. 20 2019]
[6] SEPR “Updated Assessment 1 Requirements” Rear Admirals [Online] Available:
 ​https://therandomnessguy.github.io/SEPR/Assessment/2/Updates/Upd2Req1.pdf
 [Accessed: Jan. 20 2019]
[7] SEPR “Assessment 1 Architecture” Rear Admirals [Online] Available:
 ​https://therandomnessguy.github.io/SEPR/Assessment/1/Arch1.pdf
 [Accessed: Jan. 20 2019]

https://therandomnessguy.github.io/SEPR/Images/Ass2UML/Core.png
https://therandomnessguy.github.io/SEPR/Images/Ass2UML/york_pirates.png
https://therandomnessguy.github.io/SEPR/Images/Ass2UML/Attacks.png
https://therandomnessguy.github.io/SEPR/Images/Ass2UML/Combat.png
https://therandomnessguy.github.io/SEPR/Images/Ass2UML/Screen.png
https://therandomnessguy.github.io/SEPR/Assessment/2/Updates/Upd2Req1.pdf
https://therandomnessguy.github.io/SEPR/Assessment/1/Arch1.pdf

