
Software Testing Report 

Testing Methods 

In respect to the use of Scrum development methodology, our team has decided to adopt an 
incremental approach in testing, where tests are carried out during the development process as soon 
as a feature is finished during sprints. In addition, we also implemented a release testing phase 
towards the end of the development period to ensure all the initial requirements are met as well as 
complete integration between different features. To accomplish this, our team has decided to make 
use of Grey-box testing as it is composed of both Black and White box testing, allowing for very 
diverse and flexible approaches.   
 
White Box Testing 
 
White-box testing, in which internal knowledge of the code structure is often required, was carried out 
mostly during the development process by our developers (team members who wrote the code) each 
time a new feature is implemented into the game to ensure it works correctly, matches respective 
requirements and integrates well with existing components. It is also sometimes used after bugs were 
detected through Black-box testing to determine the exact issue. Initially, we planned to utilise unit 
testing for this purpose, and although JUnit tests were used to perform unit testing on some of the 
different methods in our code [1], we found that JUnit was not compatible with libGDX (the Java 
game-development framework we used to create our game) by default, and had to carefully construct 
our testing environment to not include anything which utilised libGDX. For instance, we had to create 
a new Ship constructor which did not initialise any textures, as it was causing errors with our unit 
tests. This meant that we were unable to test too much of our game’s code using JUnit tests, directing 
us to focus on designing tests that worked through running the game and manually adding debugging 
code to our code to assist the process wherever needed. These are presented as a table in the testing 
material, with a requirement reference, description, method, predicted and actual result and whether 
it passed for each of the test [2]. Due to the compatibility issues between libGDX and JUnit tests, these 
tests are appropriate for the project so far as they are the most reliable alternative to test our 
methods in libGDX, however they are time consuming to run due to simulating via playing, and 
sometimes code needs to be edited to speed up the process. For example, it would be too time 
consuming to level up the player enough to be able to capture a college, therefore boss difficulty had 
to be reduced for testing. 
 
Black Box Testing 
 
Black-box testing, due to its nature of abstracting away from implementation details, was less rigid 
and therefore carried out at the end of the development process when all the currently required 
features had already been implemented. We had our tester (a member of our group not heavily 
involved in writing the code), played through the completed game and noted down any errors, bugs or 
unexpected encounters [3]. This approach is appropriate for the current stage of the project as it 
allows us to mimic tests from the user’s point of view and provides subjective inputs from a different 
perspective in order to find errors that otherwise would have been overlooked by someone more 
involved in the coding process, particularly GUI-related errors. In addition to this, at the end of the 
development process, we also matched our game features with the initial requirements and fit 
criterias to check whether all of them had been met. While doing this we only cared about how these 
features worked and disregarded their implementations, following the principal of Black-box testing.  
 
 



Results 

We conducted three main types of testing on our game: Unit testing, White-box walkthrough testing                             
and Black-box walkthrough testing. Links to the testing materials can be found at the end of this                                 
document.  

Unit Testing 

Name  Description  P/F  Evidence 

addGoldTest  Testing if addGold method in player class 
updates player’s gold variable correctly. 

P 

 

successfulPayGoldTest  Testing if method payGold(amt) returns true 
and changes players gold variables correctly, 
test ensures player has enough gold for 
upgrade. 

P 

failedPayGoldTest  Testing if method payGold(amt) returns false 
if player can’t afford the upgrade. 

P 

zeroPayGoldTest  Testing if method payGold(amt) returns true 
if player’s gold is equal to the cost. This tests 
an edge case. 

P 

addPointsTest  Testing if method addPoints in player class 
updates players points correctly. 

P 

damageTest  Generate a dummy ship, and simulate 
damage(amt) method. Test if method 
correctly changes Ship health. 

P 

 

All of our unit tests passed. However due to the limitations of unit testing within libGDX, we can’t claim                                     
that these tests are complete and correct as these tests are simulated without the use of a graphical                                   
end (we had to use a different Ship constructor which doesn’t contain a texture file). However, we                                 
have good reason to assume these methods are correct as these successful unit tests are backed up                                 
by play through testing of the game itself.  

White-box Walkthrough Testing 

We carried out 16 White-box walkthrough tests on our game to ensure that all requirements had been                                 
met and that there were no errors [2]. However due to the nature of the assessment, only                                 
requirements that are related to features we need to implement for Assessment 2 were considered.                             
16 out of 16 tests passed and gave the expected outcome, however we found three new bugs in the                                     
process in the form of GUI display errors.   

Found bugs: 

- Upgrade can be purchased at the Chemistry department and correctly applied to player’s ship.                           
However, the price display for the upgrade was incorrect. 

- Player’s ship can be repaired at departments and health correctly restored to full. However, the                             
price display for healing was incorrect.  

- Contact between the player’s ship and the map’s boundaries prints message on the screen,                           
these messages should only be visible when colliding with islands. 



These bugs have been documented and our developers have implemented fixes for them by changing                             
the values of the numbers in the code.   

We believe the tests are correct and complete as they follow the requirements for this Assessment so                                 
all the needed features have been considered, no more no less. In addition, in order to perform these                                   
tests we sometimes make changes to variable values within the code (points, gold,...) to test both                               
regular and extreme cases so all cases have also been considered. 

Black-box Walkthrough Testing 

We passed on the game to our tester, who was not heavily involved in the production of the code, for                                       
multiple exhaustive playtests. Most of the main components functions correctly however there were                         
still four more errors  discovered in our game [2]: 

- After a purchase has been made in the Department screen, the text does not update with a                                 
new price. 

- In the College screen, even if the player’s ship is already fully repaired and at full health, the                                   
repair button can still be click and a message generated. 

- In both the Department and College screens, the user can continue repairing the ship and                             
getting charged even if it is fully repaired by clicking the button. 

- When switching from Main Menu to Sailing screen, for a brief amount of time clicking inside                               
certain regions on the screen is still recorded as clicking the respective buttons on Main Menu.   

These bugs have been documented and our developers have implemented fixes for them, with the                             
exception of the bug with Main Menu as it is very hard to reproduce and the window for generating                                     
the error is within seconds so we haven’t fully fixed it yet. 

We believe the tests are correct and complete as they were found after a series of exhaustive                                 
playtests where every possible scenarios had been deliberately considered by our tester. In addition,                           
the fact that the tester wasn’t directly involved in the code writing process helped provide unbiased                               
inputs from a subjective point of view.  

 

   



References 

[1] SEPR “GameTests.java” Rear Admirals [Online] Available 
      https://therandomnessguy.github.io/SEPR/Assessment/2/GameTests.java 
      [Accessed: Jan. 20 2019] 
[2] SEPR “Assessment 2 Testing Documentation” Rear Admirals [Online] Available 
      https://therandomnessguy.github.io/SEPR/Assessment/2/TestingDocs.pdf 
      [Accessed: Jan. 20 2019] 

https://therandomnessguy.github.io/SEPR/Assessment/2/GameTests.java
https://therandomnessguy.github.io/SEPR/Assessment/2/TestingDocs.pdf

