
Formal Approaches to Change Management

In order to optimise the time spent on each change, we first chose a group who used the
same Java engine as us for creating their game (LibGDX). This meant that we were not only
comfortable with implementing any changes needed, but confident in doing so. We did this in
order to speed up the change implementation process as the language was already familiar
with all programmers in our group.

In our very first meeting of Assessment 3, we first decided to carefully scrutinise the
requirements system for a completed game and outline all the changes necessary to have a
finished game. From this initial analysis, we were able to create a list of implementation
changes in order to track progress and ensure no requirement was left unfulfilled. Please
find this table of changes on the group website[1].

Once we had a list of criteria to be implemented, we began to consider the need for updates
to existing code and possibly elements of the game that were unnecessary and could be cut,
in order to create a more fluid and coherent gameplay experience. During this process, we
found changes that needed to be made to the screens in order to keep memory usage
minimal. We then ran the game, checking how much memory was used at each point in
order to determine what changes needed to be made behind the scenes for a smoother
game.

At this point we now had two lists of changes to work with; a list containing features to be
implemented in order for the game to be considered ‘complete’, and a list of changes to be
made to the existing code in order to help improve the way the game runs. Now we could
begin implementing changes.

Due to the fact that we are working in a smaller group than others on this project, we found it
easiest to keep track and manage change documentation informally via a simple change log
on Google Drive. This helped us negate the extra steps of having to use a much more
complex third party software when it was possible to keep track of only 2 other programmers
changes through a simple text document. To supplement this abstraction, we also opted to
use Facebook’s messenger service in order to keep one another updated on changes being
made and requests for changes to be made. This greatly reduced the time between
requesting, performing and then documenting changes. Google Drive was ideal for our
method of progressive updating after each change and enabled the entire group to review
changes made and collaborate on them.

Throughout our entire changes process, members of our group regularly met with those from
Pi-rates to ensure the current changes made and planned were still in following with their
visions and where they intended to take their game. Their subjective opinions also helped us
keep our eyes on the overall picture of the game and how it was forming, ensuring our
changes were not getting unnecessary or ‘over the top’.

Testing Report

Please find referenced our new Testing Method Selection and Planning document [2]. To
create this, we took the Pi-rates’ exact documentation for their assessment 2 and added new
highlighted changes to their method selection. We also crossed out any methods we did not
agree with and always left reasoning as to why this was not used, both in the document and
below here in the relevant section.

After reviewing the Pi-rates Testing Methods and Approaches, we actually decided to
change from our previous testing methods to theirs. Their use of Requirements Testing was
something we had not greatly researched into before and feel that we missed out in using it
for our previous assessment.

In terms of JUnit testing, we did not need to stray far from their methods and used many of
their JUnit tests in our own documentation. This is down to the fact that we were required to
alter as little as possible aspects of the game that already worked, and changes were only
applied where necessary. Therefore we decided to use the Pi-rates’ JUnit tests whenever
possible.

Many of the Pi-rates’ requirements tests were left unfulfilled in the last assessment as not all
functions needed to be implemented into the game. These have since been amended in our
own edit of their Assessment 3 Requirements testing document [4].

Methods and Plans Report

Please find referenced our new Method Selection and Planning document [3]. To create this,
we took the Pi-rates’ exact documentation for their assessment 2 and added new highlighted
changes to their method selection. We also crossed out any methods we did not agree with
and always left reasoning as to why this was not used, both in the document and below here
in the relevant section.

We did not have access to the Pi-rates’ assessment 4 plan, it was no longer available as one
of the links on their website, and when confronted, they did not have another copy. This
meant we could not link to their assessment 4 plan and change it, so we continued to make
changes to their overall methods plan.

Our Tools
Our group decided to continue using the same tools as we have done for previous
assessments, however these differed from the group whose project we took on. For
instance, The Pi-rates used Discord in order to hold meetings when they were unable to
meet in person. We did not find this necessary as we had pre-established dates and times to
meet weekly so there was never a point in which we couldn’t meet face to face. Asana was
another tool we decided not to use, as we were already familiar with ProjectLibre we decided
to stick with what we knew and not change our software for creating Gantt style timelines
and task dependencies. A similar problem arose with the creation of UML diagrams and
flowcharts. The Pi-rates group used Lucidchart to create these however as we were already
comfortable with the free and intuitive STAR UML, we therefore stuck with what we knew
and created diagrams with that. We continued to use Photoshop as did the other group,
however some members also used GIMP, a free alternative photo editing software.

Our Team Organisation
Since assessment one, our group has always worked on a flat team structure whereby
everyone in the group is equal. This works well as we our a small group and it’s easy to keep
everyone informed on changes and decisions towards the game. However, where we differ
from the Pi-rates is that we do have a tall structure in place, just in case there are any major
disagreements we find that we cannot work through. In circumstances such as these, final
decisions rest on Alex to make as he was voted in as the overall team leader. This helps
decision making concise and avoid elongation of small discrepancies in the group.

Our Software Engineering Methods
The methodologies behind our software engineering barely differ from the group whose
project we inherited. This is most likely due to the fact that both of the groups are of similar
size (having lost members) and intend on spending the same amount of time weekly on our
projects, we both also share the same ideology that the working environment should be
‘close and casual’ with the client (as mentioned in their method selection and planning
document). This is a large amount of the reason why we both chose to adopt the Agile
methodology.

References

[1] Rear Admirals Software Engineering Project Site, 2019. [Online]. Available:
https://therandomnessguy.github.io/SEPR/Assessment/3/Original_Change_List.pdf
[Accessed: 17- Feb- 2019]
[2] Rear Admirals Software Engineering Project Site, 2019. [Online]. Available:
https://therandomnessguy.github.io/SEPR/Assessment/3/Edited_Testing_Methods.pdf
[Accessed: 17- Feb- 2019]
[3] Rear Admirals Software Engineering Project Site, 2019. [Online]. Available:
https://therandomnessguy.github.io/SEPR/Assessment/3/Edited_Method.pdf
[Accessed: 17- Feb- 2019]
[4] Rear Admirals Software Engineering Project Site, 2019. [Online]. Available:
https://therandomnessguy.github.io/SEPR/Assessment/3/Requirements_Testing.pdf
[Accessed: 17- Feb- 2019]

https://therandomnessguy.github.io/SEPR/Assessment/3/Original_Change_List.pdf
https://therandomnessguy.github.io/SEPR/Assessment/3/Edited_Testing_Methods.pdf
https://therandomnessguy.github.io/SEPR/Assessment/3/Edited_Method.pdf
https://therandomnessguy.github.io/SEPR/Assessment/3/Requirements_Testing.pdf

