
Evaluation and Testing Report 

Evaluation approach 

To evaluate our final product, we first had to make sure it met all the criteria within the initial brief.                                       
This was achieved by going through all the original requirements, checking whether they align with                             
and fully cover the assessment brief. No change was needed to this set of requirements as we                                 
believed they had properly included everything within the original brief. 

For Assessment 4, the client asked for a change in the existing requirements to be implemented. On                                 
receiving the announcement, we got together as a team and went through it together, noting down                               
any uncertainties for further clarification with the client. Addressing these ambiguities prior to the                           
development phase consolidated our confidence with the direction we were heading in. After all                           
internal and external discussions had finished, two new functional requirements F19 and F20 were                           
added to the original set of requirements to reflect our understanding of what were asked for along                                 
with their associated risks. 

For this assessment, we also carried out rigorous bug clearing and code refactoring on the inherited                               
project chosen in the Selection phase as soon as possible after we got it. This was so that we could                                       
organise team meetings for all of us to have a look at the core functionalities and reached an                                   
agreement on their quality. This was done as before new requirements were added, we wanted to                               
make sure that the existing product worked.   

The newly revised list of requirements later on played a crucial role in our evaluation process. As the                                   
game got closer to being finished, we started checking if requirements had been fulfilled by cross                               
checking them with the game’s functionalities. All requirements had been achieved apart from one                           
(F16), which we agreed as a group to not implement and was noted down to be referred to in the                                       
Requirement Report. This process of cross referencing our list of requirements to the final product                             
ensure that we had fulfilled everything asked for in the brief, as well as satisfied with the final product                                     
as the requirement list had been put together as team after thorough discussion and input from every                                 
members.  

Last but not least, once we finished the game the final executable was exhaustively checked to make                                 
sure that it was running as expected. This was achieved through multiple playthrough test runs which                               
allowed us to validate various different aspects of the game. 

Testing approach 

We got started by carrying out researches into how a software is considered good quality. After                               
careful consideration, we decided to adopt the ISO/IEC 25010:2011 standard [1] as it was the newest                               
international standard for the evaluation of software quality issued by the International Organization                         
for Standardization (ISO). The standard has 8 main characteristics: Functional suitability, Performance                       
Efficiency, Compatibility, Usability, Reliability, Security, Maintainability and Portability. However, due to                     
the nature of our project, we have selected four main attributes from this list, which in our opinion                                   
were most relevant to our product, to measure software quality: 

- Functional suitability: The software implements features that satisfy all stated or implied                       
requirements. 

- Usability: The software does not require substantial effort to be used. 
- Reliability: The software is expected to perform its intended features in a satisfactory manner. 
- Maintainability: Minimal effort is needed to make specified modifications to the software. 



Functional suitability was assessed by cross checking the features within the final version of the game                               
against the revised list of project requirements. Both Black-box and White-box testing methods were                           
used to carry this out. 

Usability was assessed through Black-box testing with an external member with no knowledge of the                             
game and a team member not heavily involved in code writing. Any difficulties these users                             
encountered while playing the game were noted down and passed onto the development team so                             
that the GUI and game balances could be improved in accordance.   

Reliability was assessed through rigorous Grey-box testing. Any bugs found during this phase were                           
noted down and passed to the development team to be fixed. 

Maintainability was assessed through extensive review of the codebase to make sure that the code is                               
modular, well formatted and commented. In addition, all new addition to the inherited codebase has                             
been highlighted in the comment for increased visibility.  

Testing Methods     

An approach similar to that of Assessment 2 was adopted by our team for this phase of development:                                   
an incremental approach during the development process where tests are carried out as soon as a                               
feature is finished during sprints, and a release testing phase towards the end to ensure integration.                               
Similarly, our team has decided to take up Grey-box testing as the main testing method following                               
Assessment 2. We also made an effort to incorporate Unit Testing in our game however                             
incompatibilities between LibGDX and JUnit prevented us from doing so. Limewire had solved this                           
problem in their implementation by adopting a framework called Mockito, sadly as some of our                             
members’ laptop had problem setting up this framework we decided to remove it to ensure                             
synchronisation between teammates - something crucial within a Scrum team.   

White Box Testing 

This was carried out mostly during the development process by our developers everytime a new                             
feature is implemented into the game or an old feature is adjusted to make sure it functions correctly,                                   
satisfies respective requirements and integrates well with existing components. These tests are most                         
appropriate for the project so far, albeit not as subjective as Black-box testing, as we can undermine                                 
the biggest overhead of simulating via playing: time by tweaking the game or add cheats to it. For                                   
instance, a hotkey can be used to add gold - removing the need for lots of grinding of battles allowing                                       
the testing of features such as game completion and boss battles to be more effectively tested. 

We carried out a myriad of White-box walkthrough tests on our game throughout the development                             
process to ensure that all requirements had been met and that there were no errors. A lot of bugs                                     
had been found along the way with most fixed long before we reached release testing phase. During                                 
the release testing phase most tests we carried out passed and produced the expected outcome,                             
however we still found three new bugs in the process: 

- Detection for completion of the minigame is slightly buggy; it doesn’t always detect that you                             
have won the game and can sometimes cause the game to crash. 

- Dragons can sometimes breach the edge of the map. 
- Dragons have a line behind them while flying. 

These problems have been noted and our developers have implemented fixes for the first two. For                               
the last bug, we found out that it had to do with the sprite sheet we obtained online which was a very                                           
good one and did not require copyright. Taking this into consideration along with the fact that the                                 
displayed line was small and blended in pretty well with the surroundings we decided to not fix it.  



Black Box Testing 

Black-box testing of the final product was carried out at the end of the development process by our                                   
tester (a member of our group not heavily involved in writing the code) and one external member                                 
(with no knowledge of the game) [2]. We felt that Black-box testing was the most effective way to test                                     
the game at this point as the game had almost been finished and implementation details were                               
disregarded, allowing for very quick isolation of requirements and fit criterias that were not met or                               
functionality in the game which was not working correctly. It also tests the game’s value as a final                                   
product as a real playthrough of the game was mimicked from the user’s perspective and subjective                               
inputs were provided from a different point of view in order to find errors that otherwise would have                                   
been overlooked by someone more involved in the coding process. 

We carried out 31 Black-box walkthrough tests on our game throughout multiple exhaustive playtests.                           
Among them, 30 passed and produced the expected outcome, 1 failed. This showed that our games                               
was very robust and produced to a good standard, as well as proving the efficiency of the rigorous                                   
White-box tests we had carried out during the development process which had identified and fixed or                               
accepted all problems.  

Failed Test: 

- 1.17: This test checks whether there are different weather conditions implemented within the                         
game, adhering to requirement F16. The reason the test failed was due to our team deciding                               
not to implement this feature in our final product as we already have another feature acting as                                 
a randomly generated event. 

 

 

 

   



Requirement Evaluation 

With the conclusion of the project’s production cycle in Assessment 4, it was essential that we                               
completed all feasible requirements given to us, with an additional emphasis on the updated                           
requirements given to us at the beginning of this quarter - alongside ensuring that the brief was met.                                   
Below is a list of all requirements [3] along with quick descriptions of how we met them or why we feel                                         
they were unnecessary. 

Functional Requirements 

Requirement F1 was carried out by using the islands on the map to represent different colleges and                                 
departments of the University. F2, F3 and F4 were all implemented throughout the process, while F5                               
was fulfilled by have multiple layers of difficulty; sea monsters, ships, and bosses, with the bosses                               
being difficult to beat without having previously battled and upgraded. Requirement F6 was                         
completed in production, as was F7, which was developed by varying the amount of points received                               
depending on whether it was a ship or boss that had been defeated. Similarly, F8 was fulfilled, and F9                                     
was carried out by having colleges be captured once their respective boss had been defeated. The                               
team implemented F10 by having departments used purely for buying upgrades and health. This was                             
done with requirement F11 in mind, as these are bought with the gold acquired from enemies. We                                 
fulfilled F12 by creating an optional maze minigame that rewards the player with points if completed                               
successfully. Requirement F13 was completed when the team worked on Assessment 3, whilst F14 has                             
been fulfilled as the player ship is displayed in the sailing screen whilst enemy ships are only shown                                   
on the combat screen. We have implemented the ability for players to save their game and come back                                   
to that save in a different session, satisfying requirement F15. As a group, we decided to miss out F16,                                     
as we felt the game was complex enough with sea monsters, ships of varying difficulty and a                                 
minigame, and a weather system would only confuse this balance. Multiple points of damage (hull and                               
sails) were implemented into the combat system, meaning different outcomes depending on the area                           
of attack, and the completion of F17. Further, requirement F18 was completed as once colleges are                               
defeated, they can be used in a similar way to departments or the player’s home college. With                                 
Assessment 4 came two new requirements, F19 and F20, which we fulfilled by implementing the                             
ability to obtain crew members with differing perquisites for the player and the possibility of                             
challenging sea monsters whilst sailing. 

Non-Functional Requirements 

We believe that we have sufficiently fulfilled requirement NF1 by providing relatively intuitive controls                           
and gradual increase in difficulty as the player discovers more of the game. NF2 has also been tested,                                   
whilst the game was created with NF3 constantly in mind. Further, NF4 was strictly adhered to in the                                   
conception of the project. 

Constraint Requirements 

Requirement C1 has been completed by submitting Assessment 4 before our given deadline, whilst                           
throughout we have adhered to C2. Further, we have attempted to keep as close to C3 as possible by                                     
constantly testing and adjusting the game where suitable. Finally, we believe we have also fulfilled C4                               
by relating the game to the University of York. 

   



References 

[1] ISO/IEC 25010:2011. Systems and software engineering - Systems and software Quality                     
Requirements and Evaluation (SQuaRE) - System and software quality models, 2011. [Online].                       
Available: https://www.iso.org/standard/35733.html 
[Accessed 30 - April - 2019] 

[2] Rear Admirals Assessment 4 Black Box Testing, 2019. [Online]. Available: 
https://therandomnessguy.github.io/SEPR/Assessment/4/Black_Box.pdf 
[Accessed 30 - April - 2019] 

[3] Rear Admirals Assessment 4 Requirements, 2019. [Online]. Available: 
https://therandomnessguy.github.io/SEPR/Assessment/4/Updates/Req4.pdf 
[Accessed 30 - April - 2019] 

 

https://www.iso.org/standard/35733.html
https://therandomnessguy.github.io/SEPR/Assessment/4/Black_Box.pdf
https://therandomnessguy.github.io/SEPR/Assessment/4/Updates/Req4.pdf

